IR - Sadtler Amino Acids & Peptides - Wiley

Spectra - 790

Description

This database contains 790 infrared spectra of amino acids, peptides, and compounds with the amino acid as a unit. It can be used for identification, classification, and verification of these materials.

Additional Information

Each compound in the database is identified by its chemical name, method of analysis, structural formula, molecular formula, and molecular weight. Synonyms, melting point, boiling point, literature references, and comments are also displayed when available.

Classifications

The main group of amino acids include:

Alanine Arginine Asparagine Aspartic acid Cysteine Glutamine Glutamic Glycine Histidine	ala arg asn asp cys gln acid glu gly his	$\begin{array}{c} CH_3\text{-}CH(NH_2)\text{-}COOH\\ HN=C(NH_2)\text{-}NH\text{-}(CH_2)_3\text{-}CH(NH_2)\text{-}COOH\\ H_2N\text{-}CO\text{-}CH_2\text{-}CH(NH_2)\text{-}COOH\\ HOOC\text{-}CH_2\text{-}CH(NH_2)\text{-}COOH\\ HS\text{-}CH_2\text{-}CH(NH_2)\text{-}COOH\\ H_2N\text{-}CO\text{-}(CH_2)_2\text{-}CH(NH_2)\text{-}COOH\\ HOOC\text{-}(CH_2)_2\text{-}CH(NH_2)\text{-}COOH\\ HOOC\text{-}(CH_2)_2\text{-}CH(NH_2)\text{-}COOH\\ NH_2\text{-}CH_2\text{-}COOH\\ NH_2\text{-}CH_2\text{-}COOH\\ NH_2\text{-}CH_2\text{-}COOH\\ HOOC\text{-}(H_2)\text{-}COOH\\ HOOC\text{-}(H_2)\text{-}(H_2)\text{-}COOH\\ HOOC\text{-}(H_2)\text{-}(H_2)\text{-}COOH\\ HOOC\text{-}(H_2)\text{-}(H_$
Isoleucine Leucine Lysine Methionine Phenylalanine Proline	ile leu lys met phe pro	[
Serine Threonine Tryptophan Tyrosine Valine	ser thr trp tyr val	 HO-CH ₂ -CH(NH ₂)-COOH CH ₃ -CH(OH)-CH(NH ₂)-COOH Ph-NH-CH=C-CH ₂ -CH(NH ₂)-COOH HO-p-Ph-CH ₂ -CH(NH ₂)-COOH (CH ₃) ₂ -CH-CH(NH ₂)-COOH

This data has been subject to the Sadtler Data Review Protocol[™] to provide researchers the highest standard in spectral data today. These rigorous qualifying procedures start at data acquisition and continue throughout the database development process.